
All about baremetal configuration and tweaks!

Configuring Traefik as a Modern Reverse Proxy for Odoo

Baremetal

As modern web applications become increasingly containerized, managing traffic across multiple
services, domains, and versions can quickly spiral out of control. That’s where Traefik, a dynamic
reverse proxy and load balancer, becomes a game-changer.

Over the past few weeks, I’ve been working on deploying multi-tenant Odoo environments (v15 to
v18) using Docker. I needed a solution that could:

Dynamically route traffic based on subdomains
Handle HTTPS via Let’s Encrypt automatically
Support longpolling and websocket traffic (used by Odoo's real-time features)
Scale with minimal maintenance

The answer? Traefik.

Traefik (pronounced traffic) is a modern reverse proxy and load balancer designed for
microservices. It automatically discovers services via Docker, Kubernetes, Consul, and more, and
configures itself on the fly.

Unlike Nginx or HAProxy, Traefik is truly dynamic — it adapts to your containers and services as
they spin up or down. It also integrates tightly with Let’s Encrypt for automatic TLS/SSL.

Imagine this scenario: you manage multiple clients, each using different versions of Odoo (e.g., 15,
16, 17, 18). You need to ensure high availability and secure access for all of them. While Nginx is a
solid reverse proxy, Traefik offers a more dynamic, automated approach that can significantly
reduce configuration time and ongoing maintenance.

So lets start with the basic configuration!

Organize your project like this:

Configuring Traefik as a Modern
Reverse Proxy for Odoo

What is Traefik?

Case: Odoo Instances and Clients

Folder Structure

project-root/

├── traefik.yml

Create acme.json before you start:

├── acme.json ← should exist and have chmod 600

└── dynamic/

 ├── dynamic_routes.yml

 └── middlewares.yml

touch acme.json

chmod 600 acme.json

traefik.yml

entryPoints:

 web:

 address: ":80"

 http:

 redirections:

 entryPoint:

 to: websecure

 scheme: https

 websecure:

 address: ":443"

 http:

 tls:

 certResolver: letsencrypt

 options: default

providers:

 docker:

 exposedByDefault: false

 network: odoo-router-net

 file:

 directory: /etc/traefik/dynamic/

 watch: true

certificatesResolvers:

 letsencrypt:

 acme:

 email: admin@example.com

 storage: /etc/traefik/acme.json

This file defines the static configuration of Traefik — the part that sets up how Traefik listens for
requests, discovers services, handles SSL certificates, and loads dynamic config files.

web listens on port 80 (HTTP).
It automatically redirects all HTTP requests to HTTPS, ensuring secure connections by
default.

websecure listens on port 443 (HTTPS).
TLS is enabled using Let’s Encrypt and a default security profile.
This is where secure traffic lands, including browser requests to your Odoo sites.

Docker provider automatically detects containers and routes based on their labels.
exposedByDefault: false means services must opt-in via labels, increasing security.
network: odoo-router-net ensures Traefik can reach services in that Docker network.

 httpChallenge:

 entryPoint: web

Breakdown of traefik.yml

entryPoints

entryPoints:

 web:

 address: ":80"

 http:

 redirections:

 entryPoint:

 to: websecure

 scheme: https

 websecure:

 address: ":443"

 http:

 tls:

 certResolver: letsencrypt

 options: default

providers

providers:

 docker:

 exposedByDefault: false

 network: odoo-router-net

The file provider loads routing rules and middleware from dynamic .yml files in
/etc/traefik/dynamic/.
watch: true makes Traefik reload config automatically when you edit those files (e.g.
dynamic_routes.yml, middlewares.yml).

Sets up Let's Encrypt integration.
Automatically requests and renews SSL certificates for your domains.
Certificates are saved to acme.json (should be chmod 600).
Uses the HTTP challenge to verify domain ownership (Traefik listens on port 80 to
complete the verification).

You reference options: default, so you should also define:

This enforces modern, secure encryption protocols and disables older TLS versions (like TLS
1.0/1.1), reducing risk from outdated clients.

 file:

 directory: /etc/traefik/dynamic/

 watch: true

certificatesResolvers:

 letsencrypt:

 acme:

 email: admin@example.com

 storage: /etc/traefik/acme.json

 httpChallenge:

 entryPoint: web

TLS Options

tls:

 options:

 default:

 minVersion: VersionTLS12

 cipherSuites:

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

dynamic/dynamic_routes.yml

http:

 routers:

This file tells Traefik how to match incoming requests to services running in your Docker
environment. It defines:

Routers: Match incoming requests based on domain and path
Services: Define where those requests should be forwarded (to which container + port)
Middlewares: Apply security headers, rate limits, etc.

 client1-http:

 rule: "Host(`client1.example.com`)"

 service: odoo-v15-http

 entryPoints:

 - websecure

 tls:

 certResolver: letsencrypt

 middlewares:

 - secure-headers

 - rate-limit

 client1-longpolling:

 rule: "Host(`client1.example.com`) && PathPrefix(`/longpolling`)"

 service: odoo-v15-longpolling

 entryPoints:

 - websecure

 tls:

 certResolver: letsencrypt

 middlewares:

 - secure-headers

 - rate-limit

 services:

 odoo-v15-http:

 loadBalancer:

 servers:

 - url: "http://odoo15:8069"

 odoo-v15-longpolling:

 loadBalancer:

 servers:

 - url: "http://odoo15:8072"

dynamic_routes.yml: Dynamic Routing Configuration

This router catches HTTPS requests to client1.example.com and forwards them to odoo-v15-http.

This router specifically handles Odoo’s real-time longpolling requests (used for chat, live updates).
This ensures that /longpolling is routed to port 8072, which Odoo uses for push communication.

Specifies that both routers accept HTTPS traffic.

Tells Traefik to automatically issue and manage SSL certificates for this domain using Let's Encrypt.

Adds security headers and request throttling for each route.

Routes the main UI/API traffic to Odoo’s port 8069.

routers Section

client1-http:

 rule: "Host(`client1.example.com`)"

client1-longpolling:

 rule: "Host(`client1.example.com`) && PathPrefix(`/longpolling`)"

entryPoints:

 - websecure

tls:

 certResolver: letsencrypt

middlewares:

 - secure-headers

 - rate-limit

services Section

odoo-v15-http:

 loadBalancer:

 servers:

 - url: "http://odoo15:8069"

odoo-v15-longpolling:

 loadBalancer:

 servers:

 - url: "http://odoo15:8072"

Routes longpolling (bus) requests to port 8072 — essential for features like live chat, POS sync, or
notifications.

It improves performance and clarity by letting Traefik route longpolling traffic separately.
Enables better control: you could assign different middleware, rate limits, or timeouts for
/longpolling.

middlewares.yml: Adding Security amp; Traffic Control
This file defines middleware rules that Traefik applies to incoming HTTP requests.
Middleware allows you to add features like security headers, rate limiting, authentication,
and more — without modifying your app code.

Why Separate Routers?

http:

 middlewares:

 secure-headers:

 headers:

 browserXssFilter: true

 contentTypeNosniff: true

 frameDeny: true

 sslRedirect: true

 stsIncludeSubdomains: true

 stsPreload: true

 stsSeconds: 31536000

 referrerPolicy: "strict-origin-when-cross-origin"

 customResponseHeaders:

 X-Robots-Tag: "none"

 X-Permitted-Cross-Domain-Policies: "none"

 rate-limit:

 rateLimit:

 average: 100

 burst: 50

secure-headers Middleware

secure-headers:

 headers:

 browserXssFilter: true

 contentTypeNosniff: true

 frameDeny: true

 sslRedirect: true

This adds a suite of HTTP headers to improve security:

XSS protection: Helps block malicious scripts
Clickjacking prevention: Denies rendering inside iframes (frameDeny)
Content sniffing protection: Prevents MIME-type confusion
HSTS: Enforces HTTPS via Strict-Transport-Security
Referrer policy: Controls what info gets sent in the Referer header

These headers are especially important when exposing admin panels or user portals.

This throttles requests:

Allows 100 requests per second on average
Bursts up to 50 extra requests during short spikes
It’s a simple way to prevent abuse, reduce load, and mitigate brute-force or DDoS-style
attempts.

In your dynamic_routes.yml, reference these like so:

This way, all requests go through your defined middleware before reaching Odoo.

Running Traefik with Docker Compose Once you’ve defined your traefik.yml, dynamic_routes.yml,
and middlewares.yml, the final step is to bring Traefik to life using Docker Compose. This step
launches Traefik and connects it to your Docker network and dynamic config files.

 stsIncludeSubdomains: true

 stsPreload: true

 stsSeconds: 31536000

 referrerPolicy: "strict-origin-when-cross-origin"

 customResponseHeaders:

 X-Robots-Tag: "none"

 X-Permitted-Cross-Domain-Policies: "none"

rate-limit Middleware

rate-limit:

 rateLimit:

 average: 100

 burst: 50

Applying Middleware

middlewares:

 - secure-headers

 - rate-limit

Once everything is in place, simply run:

This command:

Starts Traefik
Watches your Docker containers (if configured with labels)
Loads routing rules and middleware from the /dynamic folder
Automatically issues and renews HTTPS certificates via Let’s Encrypt

I've always enjoyed managing bare-metal servers and exploring ways to automate and streamline
my workflow — whether that's writing scripts or using graphical tools when it makes sense. In that
journey, I discovered Traefik as a powerful alternative to traditional proxies like Nginx.

The docker-compose.yml for Traefik

services:

 traefik:

 image: traefik:v3

 container_name: traefik

 restart: unless-stopped

 command:

 - --configFile=/etc/traefik/traefik.yml

 ports:

 - "80:80" # HTTP

 - "443:443" # HTTPS

 volumes:

 - /var/run/docker.sock:/var/run/docker.sock

 - ./traefik.yml:/etc/traefik/traefik.yml:ro

 - ./acme.json:/etc/traefik/acme.json

 - ./dynamic:/etc/traefik/dynamic:ro

 networks:

 - odoo-router-net

networks:

 odoo-router-net:

 external: true

Running Traefik

docker compose up -d

Conclusions

What stood out to me most is how maintainable and automation-friendly Traefik is. With dynamic
routing, built-in Let's Encrypt integration, and seamless Docker support, it significantly reduces the
manual overhead of managing reverse proxies in complex multi-service environments — like multi-
version Odoo deployments.

